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A transfer matrix method associated with the dual reciprocity boundary element method (DRBEM) is
developed for the study of transient heat conduction problems in presence of moving heat sources. In this
method, the time integration is processed by an iteration transfer matrix method, the coefficient matrices
are calculated only once, and no domain integration is required. It is shown that the application of DRBEM
results in considerable savings in computation time and data preparation. Numerical examples are pre-
sented to demonstrate the efficiency and accuracy of the method by comparing the computed results
with either published results or solutions using the finite element method. While only two-dimensional
problems are presented in the paper, the method can be readily extended to three-dimensional problems
to handle more complicated contact problems.
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1. Introduction

Moving heat source problems occur in a wide variety of
industrial applications where two surfaces are in relative sliding
motion. Examples include the interaction of the rolling elements
and races in roller bearings, shafts in journal bearings, and steel
rolls in rolling mills, where the interacting bodies undergo one or
more moving heat sources due to rubbing. Relative to the heat
source, the stationary body – the outer race of a roller bearing
or the sleeve of a journal bearing – is subjected to a fixed heat
source. The sliding body – the roller and the shaft that experi-
ence moving heat source – is periodically heated over a small
contact surface area while cooled over all or part of surface area
by convention.

There are volumes of published papers dealing with the thermal
behavior of rotating cylinder subjected to surface heating and con-
vective cooling. The classic work was done by Jaeger [1], who
developed an analytical transient solution for an adiabatic cylinder
subject a rotating heat source on its surface. DesRuisseaux and
Zerkle [2] extended Jaeger’s solution by assuming that a convective
cooling occurs over the entire cylindrical surface. Ling et al. [3]
outlined the quasi-stationary solution for a cylinder subject to
cooling and heating. Patula [4] presented a quasi-stationary solu-
tion related to cold rolling with the cylinder cooled and heated
on parts of its surface but insulated on the rest. Yuen [5] extended
the boundary condition formulation to nonuniform heating and
cooling, but without presenting nonuniform cooling case. Ulysse
Elsevier Ltd.

sari).
and Khonsari [6] developed an analytical solution for steady-state
temperature distribution in a cylinder undergoing uniform heating
and nonuniform cooling. By neglecting the axial heat conduction
due to high rotation speed, Gecim and Winer [7,8] presented the
steady temperature solution in a rotating cylinder subject to sur-
face heating and convective cooling. All these temperature models
are analytical in nature. To facilitate such treatment, many simpli-
fying assumptions had to be made.

In addition to the analytical solutions, significant efforts have
been devoted to study thermal behavior of rotating cylinder by
numerical techniques. Tseng [9] used a first-order upwind differ-
encing scheme to study the steady-state heat transfer behavior of
a two-dimensional rotating roll. Bennon [10] developed a three-
dimensional finite difference model to predict the temperature
distribution of the work roll in both axial and circumferential
directions. Hwang et al. [11] performed a two-dimensional finite
element analysis of steady-state heat transfer that included stag-
gered thermomechanical coupling. Lee et al. [12] presented a
three-dimensional finite element solution to the heat transfer
problem in hot rolling operation. For the finite element method
and the finite difference analysis, a very fine mesh is generally
required to obtain an accurate temperature solution because
the high temperature gradient is localized in a thin layer near
the surface.

Compared to the finite element method and the finite difference
method, the most important feature of the boundary element
method is that it only requires discretization of the boundary
rather than that of the whole volume, which reduces the dimen-
sionality of the problem by one. There are many published papers
where researchers apply the boundary element method to solve
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Nomenclature

A coefficient matrix for TMM
B Biot number, B = hR/k
B assembled boundary integral matrix related to field un-

knowns
B0 modified B matrix, B0 = BF0F�1

c(n) constant in the boundary integration equation
C matrix defined by C ¼ 1

a fHbT � G bQ gF�1

D assembled boundary integral matrix related to known
boundary temperature or flux

fj(x) interpolation functions (distance functions)
F square matrix, Fij = fj(xi)
F0(x) modified F matrix defined in Eq. (24b)
G matrix of boundary integrals with kernel eT
h heat transfer coefficient (W/m2 K)
H matrix of boundary integrals with kernel ~q
I identity matrix
k thermal conductivity (w/m K)
M coefficient matrix for TMM related to boundary condi-

tions
n unit normal outward to the boundary
NB, NI number of boundary and internal nodes
Nmov number of moving steps in one cycle
Pe Peclet number, Pe = xR2/a
�q prescribed boundary flux (W/m2)
~qðxÞ; q̂jðxÞ heat flux from fundamental solution, and heat flux re-

lated to DRBEM (W/m2)
Q ; q̂j nodal vector of q, and nodal vector of q̂jbQ matrix of vectors q̂j

rj distance between the field point x and the collocation
points xj, rj = kx � xjk (m)

R radius of cylinder (m)
R(t) vector of known boundary conditions
T, T , T(0), T1 field temperature, prescribed boundary temperature,

initial temperature, and ambient temperature (�C)eT ðxÞ; bT jðxÞ fundamental solution, and temperature related to
DRBEM (�C)

T; bTj nodal temperature vector of T, and nodal temperature
vector of bT jbT matrix of vectors bTj

t moving velocity (m/s)
x coordinate vector of field point (m)
X(t) vector of field unknowns
a thermal diffusivity (m2/s)
aj(t) unknown time-dependant functions
a vector of aj(t)
/(t), /0 angular displacement, and angular semi-heating width

(rad)
s time step size (s)
n coordinate vector of source point (m)

Superscripts
�1 matrix inversion
� time derivative
k time index

Subscripts
i index of node or moving step
j collocation index
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the convective-diffusion equation for quasi-steady moving heat
source problems. See, for example, papers dealing with the con-
stant velocity machining or welding process [13–18]. It has been
reported that using the BEM scheme, the convection term can be
modeled with high precision than that by upwind differencing in
finite difference, the sharp temperature gradient over the domain
can be easily captured [13]. However, the presence of domain inte-
grals makes the BEM inefficient when the method is applied to dif-
fusion problems with source terms.

One of the most frequently used techniques for converting the
domain integral into a boundary one is the so-called dual reciproc-
ity boundary element method (DRBEM). This method was initially
developed by Nardini and Brebbia [19] in the analysis of elastody-
namics. It has been extended to deal with a variety of other prob-
lems [20–24]. However, when dealing with transient heat
conduction, a temporal derivative is involved and a time marching
schemes is generally required, which can be quite time consuming
when the solution for large duration of time is desired. Zhu et al.
[25] showed an efficient methodology called the Laplace transform
dual reciprocity method (LTDRM) for problems involving time
marching. Amado et al. [26] studied the application of the LTDRM
in the modeling of the laser heat treatment. They showed that
while the lengthy computations for a large time marching scheme
are avoided, a large number of Laplace solutions is needed to
obtain a reliable inversion from the Laplace domain temperature
to the time one, particularly when pulse-like thermal cycles are
induced.

Vick et al. [27] developed a boundary element model to analyze
the surface temperatures generated by friction in sliding contact,
and in the subsequent study [28] applied it to examine the effects
of surface coatings on the temperatures produced by friction due to
sliding contact. A moving full space Green’s function was used as
the fundamental solution in both studies. It was a time-dependant
fundamental solution approach, Scheme 2 in Ref. [29], where the
time integration was performed within the entire span of time
interval between the initial time and the desired time level.
Although in this approach the time integration still needs to be car-
ried out, if the span of time integration is quite large, no tempera-
ture values at internal nodes need to be computed and stored at
each intermediate time step. This method may yield saving of com-
putational time if no unknown temperature values are needed at
intermediate time steps. However, if the temperature variations
up to steady state are of interest, this method becomes time con-
suming because the time integration always restarts from the ini-
tial time for the temperatures at every desired time.

A survey of the literature reveals that there is very little pub-
lished research on the application of DRBEM dealing with the heat
conduction in the rolling elements, especially when they are sub-
jected to an oscillating motion such as in the so-called pin-joint
assembly found in heavy construction and earth-moving machines.
In this paper, a transfer matrix method associated with the DRBEM
is developed for the study of transient heat conduction problems in
presence of moving heat sources. In this method, the time integra-
tion is processed by an iteration transfer matrix method, the coef-
ficient matrices are calculated only once, and no domain
integration is required. It is shown that the application of DRBEM
results in considerable savings in computation time and data prep-
aration. Numerical examples are presented to demonstrate the
efficiency and accuracy of the method by comparing the computed
results with either published results or solutions using the finite
element method. While only two-dimensional problems are pre-
sented in the paper, the method can be readily extended to
three-dimensional problems to handle more complicated contact
problems.
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Fig. 1. Problem configuration.
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2. Formulation

Consider a transient temperature field T(x, t) in a domain X with
a boundary C = CT [Cq [Ch shown in Fig. 1. The equation govern-
ing the heat conduction is:

r2Tðx; tÞ ¼ 1
a

_Tðx; tÞ; x 2 X; t > 0 ð1Þ

with the initial condition

Tðx; 0Þ ¼ Tð0ÞðxÞ; x 2 X ð1aÞ

and the boundary conditions are given by

Dirichlet : Tðx; tÞ ¼ Tðx; tÞ; x 2 CT ð1bÞ
Neumann : qðx; tÞ ¼ �qðx; tÞ; x 2 Cq ð1cÞ
Robin : qðx; tÞ ¼ hðT1 � TÞ; x 2 Ch ð1dÞ

where x is the coordinate vector. The parameter t denotes the time,
and the super-dot stands for the derivative with respect to time. a is
the thermal diffusivity of the material. q(x, t) is the heat flux defined
as qðx; tÞ ¼ k oT

on, where k is the thermal conductivity of the material,
and n is the unit normal outward to the boundary C. T(0)(x) repre-
sents the initial temperature distribution. Tðx; tÞ and �qðx; tÞ are the
prescribed boundary temperature and flux, respectively. The
parameter h is the heat transfer coefficient, and T1 stands for the
ambient temperature.

In the dual reciprocity formulation [21], the temperature is
approximated in the following manner:

Tðx; tÞ �
XNBþNI

j¼1

ajðtÞfjðxÞ ð2Þ

where NB is the number of boundary nodes defining the discretiza-
tion of the boundary C, and NI is the number of internal nodes. The
NB + NI different nodes make up of the DRM collocation points. aj(t)
are the unknown time-dependant functions. fj(x) are known inter-
polation functions linked to a set of particular solutions bT jðxÞ
through the relation

r2bT jðxÞ ¼ fjðxÞ; j ¼ 1;2; . . . ;NB þ NI ð3Þ

where bT jðxÞ can be interpreted as a pseudo-temperature with an
associated heat flux defined on the boundary as q̂jðxÞ ¼ k obT jðxÞ

on . fj(x)
is chosen to be the distance functions, e.g. fj(x) = 1 + rj in the current
study with rj = kx � xjk being the distance between the field point x
and the collocation points xj.
Evaluating Eq. (3) at every points xi, i = 1,2, . . .,NB + NI, the
resulting set of equations can be expressed in matrix form as

T ¼ Fa ð4Þ

where T = {Ti} is the nodal temperature vector of T, and a = {aj} is a
unknown vector. F is a square matrix with its entries defined as
Fij = fj(xi).

Taking derivative of Eq. (4) with respect to time yields

_T ¼ F _a ð5Þ

Inversion of Eq. (5) results in

_a ¼ F�1 _T ð6Þ

where superscript �1 denotes the matrix inversion.
Applying the usual dual reciprocity procedure [21], i.e. substi-

tuting Eq. (2) into Eq. (1), the result is multiplied by the steady-
state fundamental solution eT , and then integrating twice by parts
or using Green’s second identity, yields the standard DRBEM inte-
gral equation:

cðnÞTðn; tÞ þ
Z

C

~qðn; xÞTðx; tÞdCðxÞ �
Z

C

eT ðn;xÞqðx; tÞdCðxÞ

¼ 1
a
XNBþNI

j¼1

_ajðtÞ cðnÞbT jðnÞ þ
Z

C

~qðn;xÞbT jðxÞdCðxÞ
�

�
Z

C

eT ðn;xÞq̂jðxÞdCðxÞ
�

ð7Þ

where n is the current point located on the boundary or within the
domain X. c(n) = 1 when n is within the domain. Otherwise, it is
equal to the fraction of the angle with vertex at n subtended within
the domain. ~qðxÞ is defined as ~qðxÞ ¼ k oeT ðxÞ

on .
Using the standard boundary element discretization procedure

[20], i.e. the local approximation of both the shape of the boundary
and the distributions of appropriate functions within boundary
elements, the application of Eq. (7) at the boundary and internal
nodes ni, i = 1,2, . . .,NB + NI, results in the following systems of
equations in the matrix form as:

HT� GQ ¼ 1
a
XNBþNI

j¼1

_ajðtÞ HbTj � Gq̂j

n o
ð8Þ

where H and G are the matrices of boundary integrals with kernels
~q and eT , respectively. T and Q are nodal vectors of T and q, respec-
tively; bTj and q̂j are nodal vectors of bT j and q̂j, respectively. Note
that the term c(n) has been placed on the leading diagonal of matrix
H. The matrix T contains temperature at both internal and boundary
nodes. The heat flux q is associated with the boundary nodes, but
not with the internal nodes. The internal nodes are not always
needed. When introduced, they are independent of each other, i.e.
there is no internal mesh.

Collecting bTj and q̂j vectors in Eq. (8) into matrices, and drop-
ping the summation yields:

HT� GQ ¼ 1
a

HbT � G bQn o
_a ð9Þ

Substituting Eq. (6) into Eq. (9) results in

HT� GQ ¼ C _T ð10aÞ

with

C ¼ 1
a

HbT � G bQn o
F�1 ð10bÞ

By applying the prescribed boundary conditions in Eqs. (1b)–(1d),
Eq. (10a) can be rewritten in the following form:

BXðtÞ ¼ DRðtÞ þ C _TðtÞ ð11Þ
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where X(t) contains the unknown nodal values of temperature for
the Neumann or the Robin boundary nodes, and heat flux for the
Dirichlet boundary nodes. R(t) contains the known nodal values of
temperature or heat flux for the Dirichlet or the Neumann boundary
nodes. For the Robin boundary nodes, T1 is stored and the corre-
sponding columns of the matrix G are multiplied by h. Matrices H,
G and C are only dependent upon the model geometry, and thus
they are needed to be calculated only once. The matrices B and D
are composed of the columns of the matrices G and H, depending
on the prescribed boundary conditions.

Eq. (11) represents a system of equations of mixed type because
X(t) may include both the unknown temperature and heat flux
depending on the boundary conditions. In what follows, we first
obtain a general solution to Eq. (11) subject to different boundary
conditions given in Eqs. (1b)–(1d) and subsequently extend the
method to the moving boundary problems.

2.1. Neumann and Robin boundary conditions

When the boundary conditions are only of Neumann and Robin
type, X(t) contains only unknown temperature. Then Eq. (11) can
be rewritten in the form of

BTðtÞ ¼ DRðtÞ þ C _TðtÞ ð12Þ

The solution of Eq. (12) is [30]:

TðtÞ ¼ expðC�1BtÞT ð0Þ �
Z t

0
exp½C�1Bðt � sÞ�C�1DRðsÞds ð13Þ

Let tk and tk+1 = tk + s be the time instants of two continuous steps k
and k + 1, respectively. Then, referring to Eq. (13) the temperature
at time tk can be obtained as:

TðkÞ ¼ expðC�1BtkÞTð0Þ �
Z tk

0
exp½C�1Bðtk � sÞ�C�1DRðsÞds ð14Þ

Hence, the temperature at time tk+1 is:

Tðkþ1Þ ¼ exp C�1Btkþ1

� �
Tð0Þ �

Z tkþ1

0
exp C�1Bðtkþ1� sÞ

� �
C�1DRðsÞds

¼ expðC�1BsÞTðkÞ �
Z s

0
expðC�1Bðs� sÞÞC�1DRðtkþ sÞds

ð15Þ

Whether the integrand in Eq. (15) is analytically integrable or not
depends on the expression of the prescribed boundary conditions
R(t). If not analytically integrable, a small time step s must be cho-
sen such that from time tk to tk+1, R(t) can be treated to be constant,
equal to its value at time tk, i.e. R(k). Then, performing the related
integration [30], Eq. (15) yields

Tðkþ1Þ ¼ ATðkÞ þMRðkÞ ð16Þ

with

A ¼ expðC�1BsÞ ð16aÞ
M ¼ ðI� AÞB�1D ð16bÞ

where I is the identity matrix. The parameters A and M are the coef-
ficient matrices. For a constant step size s, they are constants and
need to be calculated only once.

Eq. (16) is the iteration solution for the transfer matrix method.
Starting from the initial temperature T(0), the temperature T(x, t) at
each time instant tk can be calculated efficiently until the desired
time level is reached. For the system that reaches the steady state
after long enough time period, A in Eq. (16a) approaches to zero
when giving a large enough value of s, and thus Eq. (16) becomes:

TðssÞ ¼ B�1DR ð17Þ
where T(ss) represents the node temperatures at the steady state. Eq.
(17) is consistent with the steady-state solution derived from Eq.
(12) when _TðtÞ ¼ 0.

The important step is to evaluate the matrix exponential A
accurately, for which the so-called precise time integration (PTI)
proposed by Zhong and Williams [31] is used. The method, which
is unconditionally stable, uses the 2N algorithm described as fol-
lows. Let N = 20, m = 2N = 1,048,576, then Ds = s/m is an extremely
small time interval. Using the superposition of exponential
function:

A ¼ expðC�1BsÞ ¼ ½expðC�1B � DsÞ�2
N

ð18Þ

and the Taylor expansion:

expðC�1B � DsÞ � I þ C�1B � Dt þ ðC
�1B � DtÞ2

2!
þ ðC

�1B � DtÞ3

3!
þ � � �

þ ðC
�1B � DtÞp

p!
¼ I þ Aa ð19Þ

with

Aa ¼ C�1B � Dt þ ðC
�1B � DtÞ2

2!
þ ðC

�1B � DtÞ3

3!
þ � � � þ ðC

�1B � DtÞp

p!

ð20Þ

results in

A ¼ ðIþ AaÞ2
N

ð21Þ

Taking into account the relationship

ðIþ AaÞ2 ¼ I þ ð2Aa þ Aa � AaÞ ð22Þ

it can be shown that, by substituting Aa by (2Aa + Aa � Aa), I + Aa be-
comes I + (2Aa + Aa � Aa) = (I + Aa)2, and Iþ ð2Aa þ Aa � AaÞ½ �2 ¼
ðIþ AaÞ2
h i2

¼ ðIþ AaÞ2
2

. Repeating such substitution for N times
yields the solution of Eq. (21).

It is noted that the matrix Aa is small compared to identity ma-
trix I due to a very small time interval Ds. When calculating matrix
A by the above algorithm, first N times of substitution is executed
to the small matrix Aa and then the result is added to the identity
matrix I, which avoids the direct additions of the identity matrix I
and small matrix, and thus the loss of significant digits during the
computations.

Alternatively, Chen et al. [32] propose an adaptive PTI algo-
rithm, which determines the value of N and p adaptively based
on the problem characteristics and the prescribed computational
error tolerance. It saves much computer time for calculating matrix
A. In this paper, the adaptive PTI algorithm is used to evaluate the
coefficient matrices.

2.2. Dirichlet boundary conditions

If the problem is subject to Dirichlet boundary condition, X(t) in
Eq. (11) includes both the unknown temperature and heat flux, and
Eq. (11) becomes a system of equations of mixed type, which
require a special treatment as follows.

From Eq. (2), the heat flux on the boundary where the Dirichlet
boundary condition is prescribed can obtained as [33]

qðx; tÞ � k
XNBþNI

j¼1

ajðtÞ
ofjðxÞ
on

ð23Þ

then the vector of unknowns X(t) in Eq. (11) can be expressed as

XðtÞ ¼ F0ðxÞaðtÞ ð24aÞ
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where F0(x) is similar to F in Eq. (4) except that the entries corre-
sponding to the Dirichlet boundary nodes xi become k ofjðxiÞ

on instead
of fj(xi), that is:

F0ðxÞ¼
fjðxiÞ Neumann or Robin boundary condition is prescribed at node xi

k ofjðxiÞ
on Dirichlet boundary condition is prescribed at node xi

(
ð24bÞ

Inversion of Eq. (4) yields

a ¼ F�1T ð25Þ

Substitution of Eq. (25) into Eq. (24a) results in

XðtÞ ¼ F0F�1T ð26Þ

Applying Eq. (26), Eq. (11) can be expressed as

B0TðtÞ ¼ DRðtÞ þ C _TðtÞ ð27aÞ

with

B0 ¼ BF0F�1 ð27bÞ

Note that Eq. (27a) can be obtained by replacing B in Eq. (12) by B0.
Therefore, using the same method as in the previous case, Eq. (27a)
can be solved.

2.3. Solution for moving boundary problems

In this section, the method is extended to solve the heat con-
duction equation subject to the moving heat source. Consider a
body subject to the heat source �qðx; tÞmoving at velocity t(t) along
its boundary C. The moving cycle of the heat source is discretized
into Nmov continuous steps such that within each step i
(i = 1,2, . . .,Nmov), the heat source can be treated to be stationary
and acts on the body for time period si, defined as:

si ¼
Moving distance in the ith step
Average velocity in the ith step

ð28Þ

Therefore, the problem within the time period si is the same as that
in Section 2.1 with the solution at the previous moving step i � 1
within the time period si�1 as a pseudo-initial condition. Thus,
the following iteration equation can be obtained:

Tðkþ1Þ ¼ AiT
ðkÞ þMiR

ðkÞ; i ¼ 1;2; . . . ;Nmov ð29Þ

where Ai and Mi are the same as those in Eqs. (16a) and (16b). How-
ever, the matrices B and D are obtained by applying the correspond-
ing boundary conditions within time period si.

There are at most Nmov pairs of the coefficient matrices Ai and
Mi to be evaluated. Each pair corresponds to a specified moving
step of the heat source or a certain load condition on the boundary
due to the motion of the flux. The calculations of different pairs of
Ai and Mi are based on the same matrices H and G in Eq. (8) by
using the corresponding boundary condition at the step i without
introducing any additional boundary integration. According to dif-
ferent load steps due to the motion of the heat source, the matrices
Ai and Mi(i = 1,2, . . .,Nmov) are consecutively substituted into Eq.
(29) to simulate the variations of the field temperature. It is noted
that in one cycle, some pairs of Ai and Mi may be the same if heat
source is subject to periodic sliding or oscillatory motion. In such
case, less than Nmov pairs of different coefficient matrices are eval-
uated. Fig. 2 shows a flowchart of the main steps of the simulation
algorithm for moving heat source problems.

Generally, the internal nodes in the DRBEM are not always
needed [33]. However, it is noted that for the moving boundary
problems, they are necessary no matter whether the boundary
condition is of Dirichlet type or not [20,22]. In any event, even
when internal nodes are introduced, they are independent of each
other and thus no internal meshing would be required.
3. Results and discussion

Based on the formulation described in Section 2, a computer
program is developed to treat transient heat conduction problems
with different types of boundary conditions [36–38]. The utility of
the method is illustrated by application of the program to three
problems. Examples are presented to validate the results and pro-
vide evidence for the efficiency and accuracy of the method.

3.1. Fixed boundary conditions

The first case involves the transient heat transfer in a square-
shaped geometry shown in Fig. 3. The problem is treated as a
two-dimensional problem by the present method although
because of the nature of the boundary conditions, it could be trea-
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ted as a one-dimensional problem. A Dirichlet boundary condition,
T = 0 is applied at side x = 0 and Robin boundary condition at side
x = 1 m with convective heat transfer coefficient h = 1000 W/m2 K
and ambient temperature T1 = 20 �C. The other two sides are sub-
ject to Neumann boundary conditions, �q ¼ 0 (insulation). Zero ini-
tial temperature is assumed. The thermal conductivity of the
material k = 52 W/m K, and the thermal diffusivity a = 10�5 m2/s.
The analytical solution for temperature distribution of such a prob-
lem can be derived [34] as

Tðx;tÞ¼ HT1
1þH

xþ4
X1
m¼1

bm cosðbmÞ�sinðbmÞ
bm 2bm�sinð2bmÞ½ � exp �ab2

mt
� �

sinðbmxÞ
( )

ð30Þ

where H = h/k, and bm are the positive roots of equation
bmcot(bm) = �H.

As shown in Fig. 3, the boundary of the unit square is discretized
into 40 equally sized linear elements with 40 boundary nodes, i.e.
NB = 40. To implement the Dirichlet boundary condition, 25 inter-
nal nodes are involved, i.e. NI = 25. The comparison of temperature
variation at location x = 1, y = 0.5 by the present method along
with the analytical solution is shown in Fig. 4(a). The comparison
of temperature distribution between the present method and the
analytical solution along the x-direction at t = 10,000 s is plotted
in Fig. 4(b). It can be seen from Fig. 4 that the results from both
methods agree very well. The time taken by the present method
to do the simulation is comparable to the analytical solution on
the same computer. Also the present method is unconditional sta-
ble. Changing the time step with different values, the exactly same
results are obtained. When taking a large time step s = 10,000 s,
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Fig. 4. (a) Comparison of temperature variation at location x = 1, y = 0.5 by the
present method along with the analytical solution. (b) Comparison of temperature
distribution between the present method and the analytical solution along the
x-direction at t = 10,000 s.
the results shown in Fig. 4(b) are directly obtained by one step iter-
ation. This feature is important for the moving boundary problem
with variable velocity.

3.2. Unidirectional moving heat source

In this case, a long cylinder with radius R is subjected to a uni-
directional moving heat source �q along its surface with angular
velocity _/. The heating is assumed to occur over the width
2/0 = 0.2805 rad. The rest of the surface is subjected to the convec-
tive boundary condition with heat transfer coefficient h and ambi-
ent temperature T1. The Peclet number Pe ¼ _/R2=a ¼ 200, and the
Biot number B = hR/k = 0.5, here k and a are the thermal conductiv-
ity and the thermal diffusivity of the material, respectively.

The numerical model by the present method is shown in
Fig. 5(a). There are 112 boundary nodes and 196 internal nodes,
i.e. NB = 112, NI = 196. The boundary is discretized into 112 equally
sized elements. In one cycle, the motion of the heat flux is divided
into 112 steps, Nmov = 112, with the same time length
s ¼ 2p=112 _/. Using the corresponding boundary condition within
each step due to the flux motion, 112 pairs of coefficient matrices
can be obtained. Substituting them into Eq. (29) and starting from
the initial condition, temperature variations are simulated. For
comparison, the finite element results are also presented. Fig. 5(b)
shows the FEM model. It can be easily seen that the model scale
is greatly reduced by the DRBEM compared with the FEM model.

The comparisons of the calculated results by the present meth-
od along with the results by ABAQUS are shown in Figs. 6 and 7.
Fig. 6 presents the comparison of temperature distribution along
the outer surface at steady state, Fig. 7(a) the comparison of the
surface temperature variation up to 100 s, and Fig. 7(b) the com-
parison of the surface temperature variation in two cycles at steady
state. All the results are in good agreement as shown in Figs. 6 and
7. In addition, the time taken by the present method is greatly less
than that by ABAQUS for the same simulation on the same com-
puter, i.e. 25 min for 1000 s simulation by the present method,
while 2 h 18 min for 420 s simulation by ABAQUS. Such calculation
efficiency will become more prominent when much longer time of
temperature history is simulated. Most of time required by the
present method is mainly in the calculation of the coefficient
matrices Ai (i = 1,2, . . .,Nmov), i.e. the matrix exponential. Once the
pairs of the coefficient matrices are determined, temperature var-
iation can be obtained efficiently by the iteration equation (29).

3.3. Oscillating heat source

Considering the same example in Ref. [35] for the case of
oscillating heat source, a rectangular domain 0.3 � 0.1 m is sub-
ject to an oscillating heat source �q on its top surface with heat-
ing width 0.1 m and oscillation velocity t = 1.2 m/s. The rest of
the surface is kept at constant temperature T0. The initial tem-
perature is Ti. The numerical model is shown in Fig. 8. 80
boundary nodes and 33 internal nodes are included. The top
surface is discretized into 30 elements. The motion of the heat
flux is divided into 40 steps in one cycle from the left to the
right side. In every step the heat flux slides across one element
size within time s = 0.3/30/t = 0.00833 s. One oscillation cycle
includes 40 heating positions of the flux, i.e. Nmov = 40. How-
ever, there are only 21 different heating steps in one cycle, cor-
responding to 21 different load conditions from the left side to
the right side. That is, some of the coefficient matrices are used
twice in one cycle. Only the 21 pairs of coefficient matrices
need to be evaluated by using Eqs. (16a) and (16b). Substituting
them into Eq. (29) according to the oscillating motion of the
heat source and starting from the initial condition, temperature
variations are obtained.
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Fig. 5. Numerical model of the roller component. (a) BEM model and (b) FEM
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Fig. 7. (a) Comparison of surface temperature variation up to 100 s by the present
method and ABAQUS. (b) Comparison of surface temperature variation in two
cycles at steady state by the present method and ABAQUS.
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The same parameters as in [35] are used in the simulation. Fig. 9
shows the comparison of the temperature rise by the present
method and by the analytical solution at the locations (0.15,0.1),
(0.05,0.1), (0.25,0.1) and (0.15,0.05). The both results are in good
agreement. The results are efficiently obtained by the present
method within 3 min, comparable to the analytical solution,
whereas it required 11 h to accomplish the same task using the
ABAQUS on the same computer.

4. Concluding remarks

In this study, a new method for transient heat conduction by a
combination of the dual reciprocity boundary element method and
the transfer matrix method is developed and applied to the study
of problems in presence of moving heat sources. The proposed
method avoids the use of the time marching schemes for transient
problems and limits the discretization of the model to its bound-
ary. Therefore, models based on this method considerably save
the computational time and the date preparation.

Once the coefficient matrices are evaluated, the temperature
variations can be efficiently simulated, and longer time of simula-
tion does not increases much the time spending. This is important
for the analysis of moving heat source problems, which generally
takes a long time for the simulation to get to a steady state. Also
the temporal derivative involved with transient problems is pro-
cessed by a so-called precise time integration (PTI) method, which
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makes the developed method unconditional stable, and thus makes
it possible to use different time steps in the analysis and to effi-
ciently simulate the moving heat source problems with variable
velocity.

Numerical examples demonstrate the efficiency and accuracy of
the method. The presented method provides an efficient solution
for the moving heat source problems. In this work, only two-
dimensional problems are presented. However, the procedure
can be readily extended to three-dimensional problems as well
as more complicated thermal contact problems. Also it is possible
to use the method to treat problems with material nonlinearities
by using the similar transformation as in Refs. [20,22,24,36]. It is
noted that, due to the temperature-dependant material properties,
the coefficient matrices A and M need to be calculated at each time
step.
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